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Abstract
In today’s interconnected world, online social networks play a pivotal role in facili-
tating global communication. These platforms often host discussions on conten-
tious topics such as climate change, vaccines, and war, leading to the formation 
of two distinct groups: deniers and believers. Understanding the characteristics of 
these groups is crucial for predicting information flow and managing the diffusion 
of information. Moreover, such understanding can enhance machine learning algo-
rithms designed to automatically detect these groups, thereby contributing to the 
development of strategies to curb the spread of disinformation, including fake news 
and rumors. In this study, we employ social network analysis measures to extract the 
characteristics of these groups, conducting experiments on three large-scale data-
sets of over 22 million tweets. Our findings indicate that, based on network science 
measures, the denier (anti) group exhibits greater coherence than the believer (pro) 
group.
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Introduction

Background

The anti-science movements in online social networks (OSNs) have been growing 
in popularity over the last decade. The COVID-19 pandemic has brought a growth 
in anti-vaxxer sentiments about this particular vaccine [1], partially inspired by bad-
will, professional actors [2], but the overall vaccine hesitancy in online spaces has 
grown as well [3]. Many other topics are prone to misinformation on OSN, too, such 
as the war in Ukraine [4]. Even more exotic fringe theories abound: flat Earthers 
unite over the internet all around the globe [5]. Overall, the anti-intellectual and 
anti-scientific views are clearly on the rise [6–8].

Climate change, a phenomenon that has garnered significant attention in recent 
years, has been the subject of extensive research [9, 10]. This issue has led to the 
formation of echo chambers on social networks, characterized by two primary fac-
tions: those who perceive climate change as a serious threat to humanity’s future, 
and those who dismiss it as a conspiracy theory.

Regarding anti-science movement and disinformation spreading, Russia has 
employed various tactics of information warfare to discredit Ukraine’s sovereignty 
and legitimacy, sow discord among NATO allies and erode trust in Western institu-
tions [11]. Similarly, during the coronavirus pandemic in Poland, Poland has faced 
numerous false or misleading claims about the virus origin, transmission, prevention 
and treatment that have fueled public confusion and anxiety [12, 13].

Recent scholarly efforts have sought to elucidate the characteristics of echo cham-
bers, which are essentially formed by two polarized groups. Jiang et al. [14] explored 
the attributes and mechanisms of echo chambers, identifying four key mechanisms: 
homophily, recommender algorithms, confirmation bias, and cognitive dissonance. 
They further delineated five common attributes of echo chambers, namely, the crea-
tion of social trends, the propagation of conspiracy theories, the diffusion of misin-
formation, political polarization, and the emotional contagion of users.

Complementing this, Alatawi et al. [15] provided a comprehensive overview of 
echo chambers, focusing on their attributes, mechanisms, detection and modeling 
strategies, and mitigation and prevention approaches. Their work underscores the 
complexity of echo chambers and the multifaceted challenges they present in the 
context of social networks and information dissemination.

Motivation

The field of network science has yet to fully explore the characteristics of deniers 
and believers, a limitation that this study aims to address. While it may initially 
appear that analyzing social network content related to these groups would not con-
tribute to resolving this issue, the opposite is true. Accurately identifying users who 
deny certain phenomena can enhance our understanding of their message dissemi-
nation strategies, their methods of reinforcing their beliefs, and their influence on 
others’ thoughts. Furthermore, to mathematically model these users’ behaviors, it 
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is essential to measure their characteristics within the context of network science. 
This study’s primary motivation is to examine these two main groups from three 
perspectives: inter-member connections, activity distribution, and group structures. 
It is important to note that some network users may not initially fall into a specific 
category. However, by generalizing common features within this user group, it is 
possible to identify other deniers using machine learning techniques, thereby creat-
ing a self-aware network.

Contribution

This paper explores the characteristics of deniers and believers in OSNs debates, 
utilizing fifteen measures derived from network science. These measures are catego-
rized into three domains: connections, distributions, and segmentation. First of all, 
revealing the coherence within the deniers (anti) group justifies why, despite having 
fewer members, their voice in the network is strong, and they can be considered cre-
ators of echo chambers. By determining the characteristics of these two user groups 
based on the aforementioned categorization, we gain a more nuanced understanding 
of echo chamber formation in the context of OSNs’ debates. Moreover, the network 
measures provided herein can be employed in structure-based approaches to detect 
echo chambers, a method followed by some studies.

The paper is structured as follows: Sect. "Related works" reviews the relevant lit-
erature. Sect. "Data" provides a statistical overview of the datasets used. Sect. "The-
oretical  framework" presents the theoretical framework of the study. Sect.  "Meas-
ures" describes the measures used to highlight the differences between deniers 
(anti) and believers (pro). Sect.  "Results and discussion" details the experiments 
conducted to test the proposed method, along with the results and discussions. In 
Sect. "Implication", we discuss the implications of the study. Finally, Sect. "Conclu-
sion" concludes the paper.

Related works

Around the beginning of the second decade of the 21st century, the use of the Inter-
net and online tools to investigate public opinions about controversial issues began. 
Before that, this issue was often discussed and analyzed in newspapers and televi-
sion. [16] used the Google search engine to assess public responses to Japan’s pro-
posed climate change mitigation policies. Later, [17] emphasized the role of micro-
blogs in studying public perceptions of climate change.

Gradually, with the spread of online social networks such as Twitter, this issue 
entered these media. in [18] analyzed hashtags related to Intergovernmental Panel 
on Climate Change’s (IPCC), they found that, in general, the use of these hashtags 
on Twitter can make an unfamiliar topic like climate change more tangible to those 
interested in these topics.

In the context of social media network structures, several researchers have 
applied network science principles to investigate climate change discourse. Williams 
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et  al. [19] explored key aspects such as sentiment analysis, community analysis, 
and homophily within Twitter data. They discovered a direct correlation between 
polarization and personal bias, with active participants in online climate discussions 
exhibiting strong attitudes towards skepticism or belief, while neutral perspectives 
were largely absent. Their study revealed a high degree of homogeneity in climate 
change discussions on social networks, with users forming like-minded clusters and 
primarily interacting within these groups.

Holme and Rocha [20] attempted to bridge climate change and network science 
by defining network measures in three categories: centrality, vitality, and controlla-
bility. They sought to model the climate system as a complex network system. Bau-
mann et al. [21] examined user activity levels and interaction rates, demonstrating 
that more active users tend to express extreme opinions. Crucially, they found that a 
user’s opinions often mirror those of their network neighbors, suggesting a mecha-
nism for the reinforcement and propagation of extreme and radical views.

As online social networks expanded, two primary groups emerged: those who 
accept climate change as anthropogenic, and those who deny it. Tyagi et  al. [22] 
developed a framework to analyze the dialogue between these two competing Twit-
ter user groups, using climate change-related tweets from the United Nations Cli-
mate Change Conference – COP24 (2018) as a case study. They found that both 
deniers and believers predominantly converse within their respective groups, a trend 
particularly pronounced among deniers. Deniers’ messages primarily target believ-
ers in anthropogenic climate change. Similarly, Neff and Jemielniak [23] analyzed 
COP25 tweets to show the emergence of transnational public spheres. Van Eck 
et  al. [10] demonstrated that believers primarily engage with mainstream climate 
blogs, while deniers favor climate-skeptical blogs. Cody et al.[24] analyzed Twitter 
responses to climate change news, finding that the majority of responses came from 
climate change activists rather than deniers.

The phenomenon of echo chambers in online social networks has also been a 
subject of extensive research. Cinelli et al. [25] quantified echo chambers on social 
media using two main elements: homophily in interaction networks and bias in 
information diffusion towards like-minded peers. Their study of Facebook and Twit-
ter data revealed a strong tendency for users to form like-minded groups. Jasny and 
Fisher [26] reported that the climate denial movement has significantly hindered 
political progress on the climate crisis in the United States. They used a novel data-
set collected from central policy actors involved in the US climate policy network in 
2017 to analyze the formation of echo chambers. They found that conservative think 
tanks, public communications by fossil fuel companies, and private philanthropy 
have all contributed to the growth of these echo chambers.

Samantray and Pin [27] analyzed tweet texts and defined a measure for polari-
zation and homophily. They found that an increase in homophily can reinforce 
individual beliefs, leading to the creation of echo chambers and increased polari-
zation. They also suggested that increased polarization can lead to societal segre-
gation based on differing beliefs, thereby naturally increasing the probability of 
like-minded communication. Walter et al. [9] showed that users typically align with 
dominant opinions in the media. They investigated factors that influence skepticism 
or support regarding the anthropogenic nature of climate change, including the risk 
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of social isolation for individuals whose views diverge from the mainstream. This 
phenomenon, based on the spiral of silence theory, suggests that social media con-
tent can influence individual behavior, potentially leading individuals to conform to 
dominant behaviors on social media. The authors posited that echo chambers tend 
to reinforce existing opinions rather than promote dialogue and critical reasoning. 
They identified influencing factors at four levels: country, news outlet, individual 
journalist, and individual news story, and studied these factors across five countries. 
They concluded that echo chambers in climate change discourse can shape public 
opinion, and that climate scientists aiming to disseminate evidence-based knowl-
edge must engage with a broader range of media outlets, including tabloid news and 
conservative media, to better inform the debate.

Data

We have acquired the data from George Washington University Libraries Data-
verse, the Climate Change Tweets Ids [Data set] [28].1 This dataset has been col-
lected from the Twitter API using Social Feed Manager, and totalled to 39,622,026 
tweets related to climate change. The tweets were collected between September 21, 
2017 and May 17, 2019. However, there is a gap in data collection between January 
7, 2019 and April 17, 2019. The tweets with the following hashtags and keywords 
were scraped: climatechange, #climatechangeisreal, #actonclimate, #globalwarm-
ing, #climatechangehoax, #climatedeniers, #climatechangeisfalse, #globalwarming-
hoax, #climatechangenotreal, climate change, global warming, climate hoax.

Due to Twitter’s Developer Policy, only the tweet IDs were shared in the data-
base, not the full tweets. Therefore, we had to hydrate the tweet ids with the use 
of Hydrator application [29]. Hydrating was carried out by us in June, 2020, and it 
allowed us to obtain 22,564,380 tweets (some tweets or user accounts are deleted or 
suspended by Twitter in its standard maintenance procedures). Challenges encoun-
tered during data hydration included dealing with deleted tweets or suspended user 
accounts, which is a common occurrence in Twitter’s standard maintenance pro-
cedures. We addressed this by using the Hydrator application, which allowed us 
to recover as much data as possible within the constraints of Twitter’s Developer 
Policy.

In order to comprehensively diagnose Polish social networks and to enable 
automated classification of Twitter users in terms of their attitude towards vacci-
nations, we collected a balanced, importance-wise database of Twitter users for 
manual annotation. The most important keywords used by groups that spread anti-
vaccination propaganda were identified. Using our programming pipeline, databases 
of Polish social media on the topic of the pandemic and attitudes towards vaccina-
tions were obtained. The raw data contained over 5 million tweets from almost 3600 
users with the following hashtags related to the COVID-19 pandemic in Poland 
and the war in Ukraine: stopsegregacjisanitarnej, nieszczepimysie, szczepimysie, 
szczepienie, szczepienia, koronawirus, koronawiruswpolsce, koronawiruspolska, 

1  https://​datav​erse.​harva​rd.​edu/​datas​et.​xhtml?​persi​stent​Id=​doi%​3A10.​7910%​2FDVN%​2F5QC​CUU.
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rozliczymysanitarystow, stopss, covid, covid19, sanitaryzm, epidemia, pandemia, 
plandemia, zelensky, zelenski, wojna, muremzabraunem, konfederacja, wojnana-
ukrainie, putin, ukraina, ukraine, rosja, russia, wolyn, bandera, upa. Twelve anno-
tators rated the scraped Twitter users based on their posts on a nine-point Likert 
scale. Samples evaluated by annotators were partially overlapped in order to exam-
ine their consistency and reliability. Statistical tests performed on data before and 
after binning (in three- and two-category versions) confirmed significant annotator 
agreement. Fleiss’ kappa, Randolpha, Kirchendorff alpha, and intracorrelation coef-
ficients indicate non-random agreement among the competent judges (annotators).

Our initial data acquisition based on the abovementioned hashtags yielded 
5,308,997 posts. To focus specifically on discussions related to COVID-19 and the 
war in Ukraine, we implemented a filtering process using Polish word stems rel-
evant to these topics. This step reduced our dataset to 4,840,446 posts. The filter-
ing was performed using regular expressions based on lemmatized versions of key 
terms. For war-related content, we used stems such as ‘wojna’ (war), ‘inwazj’ (inva-
sion), ‘ukrai’ (Ukraine), and ‘putin’. For COVID-related content, we used stems like 
‘mask’ (mask), ‘szczepi’ (vaccine), and ‘koronawirus’ (coronavirus). This approach 
allowed us to capture various grammatical forms of these words.

Following this initial filtering, we removed three users who had no posts related 
to either COVID-19 or the war in Ukraine. This step left us with 3,597 users and 
4,839,995 posts. Finally, to ensure consistency in our analysis, we selected only 
posts in the Polish language. This final step resulted in our dataset of 3,577,040 
posts from 3,597 users. Before the tweets content analysis was performed, text lem-
matization had been performed, special characters, links, and low-importance words 
based on a stop list (e.g. conjunctions) had been removed.

Data preprocessing has been carried out in Python programming language [30] 
with the use of specific libraries and our original code. The hydrated tweets were 
further cleaned by removing duplicates and all tweets that had no English language 
label. Some characters and technical expressions were then replaced with natural 
language terms (e.g., changing “&amp” into “and”). We have also created a couple 
of versions of the database, for various purposes—in some of them we have replaced 
emoji pictures with their descriptions (using the demoji library and our original 
code), for other database versions we have removed the emojis, hyperlinks, and spe-
cial characters. This caused the dataset to comprise 24,083,452 tweets (7,741,602 
tweets without retweets), which makes it the biggest database of social media data 
referring to climate change analyzed to date.

We created the social network directed graph with the use of RAPIDS cuGraph 
library in Python2 for most of the network statistics calculations, and also with the 
use of the graph-tool [31]. The final graph visualization was created with the use 
of Gephi [32] after preparing and filtering the data in Python. The final graph had 
4,398,368 nodes and 18,595,472 edges, after removing duplicates and self-loops.

The final label of “believer,” “denier,” or “neutral/unknown” was assigned to 
users present across annotators through the averaging of results from multiple 
annotators.

2  https://​github.​com/​rapid​sai/​cugra​ph.
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In the Ukraine dataset, the term ‘anti-group’ refers to various tactics of infor-
mation warfare aimed at discrediting Ukraine’s sovereignty and legitimacy, whereas 
the ‘pro-group’ consists of tweets that support Ukraine’s sovereignty and legitimacy. 
In the Vaccine dataset, ‘anti’ denotes a group of users who publish tweets against 
vaccination, while ‘pro’ users advocate for vaccination programs. In the Climate 
Change dataset, ‘denier’ users dismiss it as a conspiracy theory, while ‘believer’ 
users perceive climate change as a serious threat to the future of humanity.

Theoretical framework

Existing data in climate change and war datasets in this study show that the number 
of members in the deniers (anti) group is significantly lower than in the believers 
(pro) group. Despite this, the deniers group is often the main actor in creating and 
spreading controversial issues. Given that this group is capable of influencing a large 
number of nodes (users) in the network, our study aims to investigate the network 
structure of this group and explore why it plays a crucial role in spreading contro-
versial topics despite having fewer members. Additionally, while existing studies on 
influence maximization have highlighted the importance of network structures, such 
as clustering coefficient, path, and node degree, several studies have focused exclu-
sively on central or influential nodes. Berahmand et  al. [33] introduced the DCL 
model to detect spreaders, emphasizing their importance in information diffusion 
within collective networks. Their model takes into account key location parameters, 
including node degree, the degree of its neighbours, common links between a node 
and its neighbours, and inverse cluster coefficient. Salavati et al. [34] proposed the 
GLR model to rank influential nodes, indirectly addressing information spread-
ing. Their model enhances closeness centrality by leveraging the local structure of 
nodes. Rui et al. [35] introduced the Reversed Node Ranking (RNR) model, which 
assesses a node’s influence and the impact of its neighbours on that node. Addition-
ally, Wen & Deng [36] devised the local information dimensionality (LID) model, 
which considers central nodes and their local structural properties in the context of 
information diffusion.

Many researchers are increasingly delving into the intricacies of network struc-
tures to harness their potential in solving information diffusion problems. In his 
work, Chen [37] shed light on the pivotal role of network structure and explored 
how the information diffusion process hinges on the quantity and positioning of seed 
nodes. To identify influential early adopters, Chen employed four centrality meas-
ures, including betweenness centrality, closeness centrality, K-shell, eigenvector, as 
well as two heuristics: the greedy algorithm and degree discount.

Liu et al. [38] emphasized the significance of the average path length in infor-
mation diffusion. They proposed two heterogeneous nonlinear models—one for 
modeling the topologies of information cascade trees and another for simulat-
ing the stochastic process of information diffusion within social networks. Key 
features for modeling cascade tree topologies included the average path length 
and degree variance of cascade trees. Their study revealed that users with a large 
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number of friends had a lower probability of disseminating information, particu-
larly in terms of reading messages on WeChat.

In addition, we investigate the role of two network metrics in influence maxi-
mization —clustering coefficient (CC) and betweenness centrality (BC)—which 
significantly highlight network closure, path information, and coherency in the 
network. We developed an information diffusion model based on these two fea-
tures, and the experimental results show that, on average (over 10 runs), our 
model activated 55% of nodes in the deniers group and 50% of nodes in the 
believers group. This finding indicates that in a network with higher values of 
CC and BC, the number of activated nodes is higher. Our information diffu-
sion model takes as input a graph relevant to the network, consisting of nodes, 
edges, associated probabilities (randomly assigned to each edge in the network), 
and the k value (representing the seed node). The model first randomly selects 
a node and designates it as the seed node, initiating the information cascade, 
denoted as C. Within a while loop, the algorithm discovers the neighbors of the 
tail node of C. If the tail node has no neighbors, the algorithm terminates. Oth-
erwise, the BC and CC are computed for each neighbor, and their identifiers, 
along with the computed BC and CC values, are appended to a data structure. 
In the second phase of the algorithm, we aim to find the best neighbor for the 
current node. There are two scenarios to consider: when there is more than one 
neighbor and when the current node has only one neighbor. In the first scenario, 
if there are multiple neighbors, the model determines the best neighbor’s index 
based on the BC value. In the second scenario, when the current node has only 
one neighbor, it assesses the probability value. If the probability is greater than 
the threshold defined in this study (0.5), the information is diffused to the next 
node. Otherwise, the process is terminated.

Therefore, our hypothesis for this research is that the deniers group is more 
coherent compared to the believers group, such that despite the lower number of 
members in the deniers group, information propagates more smoothly, leading 
to the activation of more nodes. To do this, we investigate network measures in 
three categories such as connections, distributions and segmentation to highlight 
the coherency of deniers group.

Measures

In this section, we introduced some measures that deploy to address the char-
acteristics of believers and deniers groups, these measures widely used in net-
work science especially social network analysis. These measures fall into three 
main categories, namely, connections, distributions and segmentation, and are 
discussed under their respective category.
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Connections

The connections category of social network measures encompasses the connection 
characteristics that exist between users in OSNs.

Assortativity. Assortativity coefficient (r) of a graph measure can be defined 
as the probability of the nodes in a graph linking to other nodes of similar degree 
[39–41]. To determine this measure, the Pearson correlation coefficient is computed 
for the degrees of the node pairs for all the edges in a graph, and this calculation 
returns values in a range between -1 and 1. An assortativity value of less than zero 
shows that nodes connect to others with dissimilar degrees. On the other hand, an 
assortativity value that is greater than zero indicates that nodes are likely to connect 
with those with similar degrees.

Network Closure. Allcott et  al. in [42] stated that the concept of network clo-
sure is used to indicate the level of connectivity between friends of friends. So, if 
friends in a network have common friends (neighborhood), then this network is con-
sidered to exhibit a high level of network closure. In contrast, if the friends in a 
network have different friends, then low network closure is present. According to 
[43], network_reciprocity function from the igraph package can be used to compute 
network clouser, in fact a way to find the network clouser is computing reciprocity. 
This measure in network sciences refers to the likelihood of vertices to be mutually 
linked.

Motifs: Network motifs are sub-graphs that repeat themselves in a specific net-
work or even among various networks. Each of these sub-graphs, defined by a par-
ticular pattern of interactions between vertices, may reflect a framework in which 
particular functions are achieved efficiently.

Density: The density measure is calculated as the number of existing connections 
in a network divided by the number of possible connections in a network [39, 44, 
45].

Distributions

The distributions category contains measures that describe how users are distributed 
in a network. This is very important especially for identifying the influential nodes 
in a network.

Closeness centrality: The closeness for a vertex is the reciprocal of the sum of 
geodesic distances to all other vertices as in (1):

where d
G
(v, t) is geodesic from v to t.

(1)C
c(v) =

1
∑

t∈V#v dG(v, t)
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Path length: To establish the path length, the radius and diameter are calculated 
using the eccentricity of each node in a social graph. Eccentricity is defined as the 
maximum distance between a node and any other nodes in the graph. The radius is the 
minimum number of all eccentricities, while the diameter is the maximum. The aver-
age path length is simply the average of all-pairs-shortest-paths on the social graph [39, 
45].

Network skewness: The skewness statistical function is utilized to show the asym-
metry of the data distribution. Under positive skewness, most of the interactions occur 
at the start of the time period, whereas under negative skewness the majority of interac-
tions take place at the end of the time period. The distribution of data is approximately 
symmetrical if the skewness value is between − 0.5 and 0.5. Therefore, this study con-
siders distribution to be abnormal (asymmetrical) if the skew value is higher than 0.5.

Segmentation

The segmentation category of measures addresses the issue of clustering in OSNs, and 
the measures in this category, especially cliques, are widely used in community detec-
tion research.

Clustering Coefficient (transitivity): The cluster coefficient (CC) is a fraction of the 
possible interconnections in a network as in (2). The value of CC is between 0 and 1. 
The CC of a whole network is the average of CC of each user [39, 45]

where k
v
 is a degree of v and N

v
 is the number of connections between the neighbors 

of v.
Clique: A clique in a network is formed when all the nodes have connections with 

each other. This measure is usually used in community detection algorithms as it can 
show how dense the connections are in a community.

Community structure: Community detection (CD) studies attempt to develop meth-
ods to find a group of nodes which have a higher connection with each other than with 
other nodes in the rest of the network. The basic algorithm for detecting communities 
is the GN algorithm, which was proposed by [41]. The GN algorithm is based on the 
maximum betweenness between the nodes in each community and the lowest intercon-
nection between the nodes in different communities. To evaluate the results of the GN 
algorithm, the authors also introduced the modularity measure (Q). Modularity is com-
puted as the best division such that the greatest number of edges are within communi-
ties and the least are between communities.

Strongly connected component (SCC): The portion of a directed graph in which 
there is a path from each vertex to another vertex.

Weakly connected component (WCC): A directed graph is weakly connected If for 
its undirected equivalent graph, there is a path between its two vertices.

(2)CC(v) =
2 ∗ N

v

k
v
∗ (k

v
− 1)
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Results and discussion

Experimental setup

In this section, we present the results obtained from the experiments based on 
the aforementioned measures in Sect.  "Theoretical  framework". It is important to 
note that due to the disparity in the number of users between the two groups and 
consequently the variation in the number of connections within these groups, we 
employed the permutation method to test the results of the measures mentioned in 
Sect. "Theoretical framework". For this purpose, we randomly selected a subgraph 
with 200 connections 1000 times. In each iteration, the entire set was shuffled to 
ensure the distinctiveness of the subgraphs, resulting in different subgraphs each 
time. However, it was not possible to apply this approach to certain measures, such 
as SCC, diameter, and closeness, which rely on the path between nodes. The rea-
son behind this limitation is that when selecting a subgraph for the permutation 
test, multiple components are formed within the believers’ group. Consequently, 
when computing these measures using R language functions, the length of the path 
between two nodes within a component is considered as one, which is incorrect. 
Hence, the permutation test was not conducted for these three metrics.

To ensure the robustness and statistical significance of our findings, we computed 
the pseudo p-value for each metric. In the context of this study, the pseudo p-value is 
a measure used to determine whether the observed differences between the Deniers 
and Believers groups could be attributed to random chance. The pseudo p-value is 

Table 1   Network measures in terms of connections

Dataset

Vaccine Ukraine Climate change

Measure Anti Pro Anti Pro Deniers Believers

1 Assortativity − 0.09 − 0.29 − 0.15 − 0.30 − 0.034 − 0.021
2 Network reciprocity 0.0025 0.0012 0.005 0.001 0.0048 0.0000
3 Motifs 725 1690 2092 1058 1083 20
4 Density 0.004 0.004 0.006 0.003 0.005 0.001

Table 2   Network measures in terms of distribution

Dataset

Vaccine Ukraine war Climate change

Measure Anti Pro Anti Pro Deniers Believers

1 Closeness 0.044 0.015 0.07 0.06 0.06 0.008
2 Diameter 11 13 8 12 8 9
3 Skewness (duration) 0.63 0.52 0.30 0.61 − 2.36 − 2.39
4 Skewness (join date) − 0.60 − 0.56 − 0.22 − 0.53 3.09 3.31
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calculated using the formula k+1
n+1

 where k represents the number of iterations in 
which the metric value for the deniers (anti) group is consistent with our hypothesis 
and supports the observed results, as presented in Tables 1, 2, and 3. n is the total 
number of permutations. This approach involves repeatedly shuffling the data and 
recalculating the metrics to create a distribution of possible outcomes under the null 
hypothesis (i.e., no real difference between groups). The pseudo p-value quantifies 
the proportion of these permutations where the deniers (anti) group’s metrics align 
with the hypothesis, relative to the total number of permutations. A low pseudo 
p-value suggests that the observed differences are unlikely to be due to random 
chance, thereby providing strong evidence that the structural characteristics of the 
deniers (anti) network, such as higher transitivity or density, are indeed distinct and 
significant.

Connection analysis

In this section, we analyze connections in the three aforementioned datasets. Table 1 
presents the experimental results in terms of connection measures, including assorta-
tivity, motifs, density, and reciprocity. The assortativity values indicate that, in gen-
eral, there is no tendency to form connections between nodes with the same degree 
in all datasets. However, a comparison of these measure values reveals that the Pro 
group in the vaccine and Ukraine datasets demonstrates a stronger inclination to 
interact with users who have different degrees. The assortativity values are − 0.09 
and − 0.29 for the vaccine dataset and − 0.15 and − 0.30 for the Ukraine dataset, 
representing the anti and pro groups, respectively. Conversely, the Climate dataset 
exhibits the opposite trend. In this dataset, the deniers group shows a greater interest 
in establishing relationships with users who possess dissimilar degree values.

In terms of network closure, as mentioned earlier, it can be assessed through the 
reciprocity measure. It is important to note that a reciprocity value of 1 indicates 
a purely bidirectional network, while a value of 0 signifies a purely unidirectional 
network. The values of this metric in all three datasets indicate a more cohesive rela-
tionship within the deniers group. Specifically, for the deniers group, the reciprocity 

Table 3   Network measures in terms of segmentation

Dataset

Vaccine Ukraine war Climate change

Measure Anti Pro Anti Pro Deniers Believers

1 Transitivity (local) 0.002 0.0008 0.006 0.0009 0.020 0.0002
2 Transitivity (global) 0.005 0.002 0.013 0.002 0.010 0.0005
3 Cliques 2.4 2.4 2.88 2.18 2.72 2
4 Modularity 0.01 0.12 0.02 0.06 0.10 0.15
5 SCC 0.01 0.04 0.02 0.04 0.007 0.001
6 WCC​ 0.0001 0.0007 0.0006 0.0005 0.0001 0.000008
7 Count components 29 28 7 36 18 152
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values are 0.0025, 0.005, and 0.0048 in the vaccine, Ukraine, and climate data-
sets, respectively. On the other hand, for the believers group, the values are 0.0012, 
0.001, and 0.000 for the corresponding datasets. Although the overall magnitude of 
this metric is relatively small, the difference between the two groups is statistically 
significant across all three datasets.

The number of motifs, which indicate repeating patterns in the network, is signifi-
cantly higher for the deniers group compared to the believers group in at least two 
datasets. It is worth noting that we set the number of nodes in the ‘count_motifs’ 
function to 4. In fact, motifs serve as the building blocks of a network [46] and dem-
onstrate that as the number of motifs increases for specific numbers of nodes, the 
number of subnets among those nodes also increases. Specifically, the deniers group 
exhibits 1083 motifs in the climate dataset and 2092 motifs in the Ukraine dataset, 
while the believers group shows 20 motifs in the climate dataset and 1058 motifs 
in the Ukraine dataset. Interestingly, in the vaccine dataset, the number of motifs is 
higher for the pro group (4690 motifs) than the anti group (725 motifs).

Another significant measure that indicates the cohesion of nodes based on the 
number of connections within a subgraph is density. This metric also reveals a sig-
nificant difference between the two groups in the climate and Ukraine datasets, 
where the deniers group exhibits higher density values. In contrast, both groups 
demonstrate the same density value in the vaccine dataset. The measurement of this 
metric demonstrates that the deniers group possesses more connections compared to 
the believers group.

Distribution analysis

Closeness centrality is one of the significant measures that highlights the distri-
bution within a network. As we have observed from the definition of closeness, a 
higher closeness value between two nodes signifies a shorter distance in terms of the 
shortest path. The test results of this metric demonstrate a similar pattern in both the 
deniers and believers groups across the three datasets, thus supporting our hypoth-
esis. Specifically, for the deniers group, the closeness values in the climate change, 
Ukraine, and vaccine datasets are 0.06, 0.07, and 0.044 respectively. Conversely, 
for the believers group, the corresponding values are 0.008, 0.06, and 0.015 respec-
tively. These results indicate that, on average, the distance between nodes is shorter 
within the deniers group, implying a higher level of cohesion among them.

Another metric that is closely tied to the length of the path is the diameter. In 
general, a lower value for this attribute indicates a shorter distance between two 
nodes. The test results reveal that the deniers group has a smaller diameter, indi-
cating shorter distances between their nodes compared to the believers group. This 
further highlights the close relationship among the members of the deniers group.

We also examined and tested the distribution measure concerning the activity of 
the two groups. In terms of user activity, we initially analyzed the distribution from 
two perspectives: the duration of activity and the time of joining for users from dif-
ferent groups. We evaluated the skewness of activity duration and the time of join-
ing the network in the two groups under study. It is important to note that positive 
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skewness indicates that the majority of interactions occur at the beginning of the 
time period, while negative skewness suggests that most interactions take place 
towards the end of the time period. Furthermore, as [47] states, if the skewness 

Fig. 1   Skewness of user activity. a In climate change, b Ukraine, c vaccine datasets
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value falls between -0.5 and 0.5, the distribution of data is considered approximately 
symmetrical. Therefore, this study considers the distribution to be abnormal (asym-
metrical) if the skew value exceeds |0.5|.

Figure  1 and Table  2 present the skewness of user activity duration, which 
refers to the length of time each user remains active in the network. We calculated 
this measure based on the first and last connection times. In both the Vaccine and 
Ukraine datasets, the skewness values for both the anti and pro groups are positive. 
Specifically, the skewness values are 0.63, 0.52, 0.30, and 0.61 for the anti and pro 
groups of the Vaccine and Ukraine datasets, respectively. These values indicate that 
users have not been active for the entire duration of the network, with the majority 
being active for less than 1000 days. Conversely, in the climate dataset, this metric 
exhibits a negative skewness, indicating that users have remained active until the last 
days of the available data. However, the difference in this metric between the two 
groups is minimal.

As shown in Fig. 2 and Table 2, the skewness values for the joining time of the 
two groups in Vaccine and Ukraine are negative. However, these values are negligi-
ble, as indicated in Table 2. Specifically, for the anti and pro groups of the Ukraine 
dataset, the skewness values are − 0.22 and − 0.53, while for the vaccine dataset, 
they are − 0.60 and − 0.56 respectively. Nonetheless, we can deduce that a signifi-
cant portion of network joining in both datasets occurred in recent years. This trend 
is particularly prominent in the vaccine dataset, likely due to the COVID-19 pan-
demic’s occurrence in recent years. On the other hand, it is evident that the majority 
of users joined the climate change network in its early days, with a minimal differ-
ence of 3.09 for deniers and 3.31 for believers.

Segmentation analysis

In this section, we test important metrics in the network that can greatly contribute 
to strengthening our hypothesis. The first metric is the clustering coefficient, which 
allows us to highlight the stronger relationships among nodes in the deniers (‘Anti’) 
group. According to the igraph documentation [48], two types of clustering coef-
ficients can be examined in each network: local and global. The local clustering 
coefficient calculates the ratio of the number of triangles connected to a vertex to 
the number of triples centered on that vertex, while the global clustering coefficient 
calculates the ratio of the number of triangles to the number of connected triples in 
the entire graph. Table 3 presents the experimental results in terms of segmentation 
measures.

The results for both local and global clustering coefficients indicate that the 
deniers (‘Anti’) group has higher values compared to the believers (‘Pro’) group. 
In network science, this measure is used to demonstrate cycles in the network. This 
suggests that the network structure of denier users resembles a graph, while the 
structure of the believers group is more tree-like.

Specifically, for the believers group, the local clustering coefficient values 
for the Climate, Ukraine, and Vaccine networks are 0.0002, 0.0009, and 0.0008, 
respectively. Additionally, the global clustering coefficient values for the believers 
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group in the Climate, Ukraine, and Vaccine networks are 0.0005, 0.002, and 0.002, 
respectively.

Fig. 2   Skewness plot of Joining the network. a Climate change, b Ukraine, c vaccine datasets
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Another measure that highlights a strong and interconnected structure in the net-
work is the clique. Testing this metric on the Climate and Ukraine networks further 
confirms the cohesive communication within the deniers group, as evidenced by the 
presence of multiple cliques. In the climate network, the average number of cliques 
for the deniers group is 2.72, while for the believers group it is 2. In the Ukraine net-
work, these values are 2.88 for the deniers group and 2.18 for the believers group. In 
the vaccine network, both groups exhibit an average of 2.44 cliques.

Another intriguing observation we made while evaluating the measures pertains 
to the structure of communities within the two target groups. In community detec-
tion studies, achieving the highest modularity value is desirable, as it indicates well-
structured communities. A well-structured community is characterized by a higher 
number of connections within the community compared to outside of it. In the data-
sets we examined, the modularity value for the deniers (‘Anti’) group is lower than 
that of the believers (‘Pro’) group. This suggests the presence of overlapping com-
munities within the deniers group, as opposed to the believers group. This indicates 
a propensity among members of deniers communities to establish connections with 
members of other communities, thereby demonstrating stronger interconnections 
within the deniers group.

Specifically, for the Climate network, the modularity values for the deniers and 
believers groups are 0.10 and 0.15, respectively. In the Ukraine network, these val-
ues are 0.02 for anti and 0.06 for pro. Lastly, in the Vaccine network, the modularity 
values are 0.01 for anti and 0.12 for pro.

We have visualized the communities of the first 100 edges in each network, sorted 
based on the weight value between each pair of nodes. Figure 3 displays the com-
munities in the vaccine network. It is worth noting that the modularity value for the 
believers (‘Pro’) group in this network is 0.52, while for the deniers (‘Anti’) group 
it is 0.36. The image further illustrates that the subnetworks of the believers group 
exhibit a higher degree of modularity, whereas there is overlapping within the com-
munities of the deniers group.

Furthermore, Fig. 4 illustrates the community structure for the vaccine network. 
In this network, the presence of overlap and the lower modularity value within the 
‘Anti’ group signify a higher degree of cohesion among its members.

The culmination of this well-defined segregation is evident in the climate net-
work. Figure 5 displays the majority of connections for the believers group, which is 
0.83, compared to the deniers group, which is 0.51.

Furthermore, our findings indicate that the structure of the deniers (anti) network 
exhibits a more graph-like nature compared to the believers (pro) network. Although 
the overall network follows a sparse tree structure, the deniers network displays a 
greater level of graph-like connectivity. Figures 6, 7, and 8 depict the network struc-
ture of 100 edges with the highest weight in three datasets. It is evident that the 
network of believers (pro) is more segmented into distinct components, while the 
network of deniers (anti) users showcases a higher level of interconnectivity.

This observation is supported by the number of components in each group, 
as shown in Table  3. In the climate dataset, the deniers group has significantly 
fewer components compared to the believers group, with 18 and 152 components 
respectively. Similarly, for the anti and pro groups in the Ukraine dataset, there 
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are 7 and 36 components respectively. However, there is no significant difference 
in the number of components between the two groups in the Vaccine dataset.

Figure 6a and b depict the network structure of believers and deniers in the cli-
mate dataset, respectively. It is evident that the network of believers is highly seg-
regated, with multiple disconnected components, while the deniers group forms a 
single component in Fig. 6. Specifically, the believers group exhibits 15 compo-
nents, showcasing a higher degree of fragmentation in comparison.

Figure 7a and b illustrate the network structure of pro and anti in the Ukraine 
dataset, respectively. It is noticeable that the deniers group shows a smaller 

Fig. 3   The community structure and modularity value for 100 connections in the Ukraine dataset, based 
on the highest connection weight. Subfigure. a Represents the communities for the ‘Pro’ group, while 
subfigure, b depicts the communities for the ‘Anti’ group
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number of components compared to the believers group, indicating a higher level 
of cohesion within the deniers group.

Figure  8a and b display the network structure of pro and anti in the vaccine 
dataset, respectively. Similar to the previous datasets, there is a clear segregation 
observed within the Pro group, with multiple disconnected components. This further 
supports the notion of distinct subgroups within the Pro group in the vaccine dataset.

In addition, the pseudo p-value indicates that the difference in transitivity is sta-
tistically significant and unlikely to be due to random chance, which supports your 
hypothesis that the Deniers consistently have higher transitivity.

Fig. 4   The community structure and modularity value for 100 connections in the Vaccine dataset, based 
on the highest connection weight. Subfigure. a Represents the communities for the ‘Pro’ group, while 
subfigure. b depicts the communities for the ‘Anti’ group
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Pseudo p‑value

To demonstrate the robustness of our results, we computed the pseudo p-values for 
various metrics, including local and global transitivity, the number of cliques, mod-
ularity, density, motifs, assortativity, and reciprocity. These pseudo p-values help 

Fig. 5   The community structure and modularity value for 100 connections in the climate dataset, based 
on the highest connection weight. Subfigure (a) represents the communities for the believers group, 
while subfigure (b) depicts the communities for the deniers group
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determine the statistical significance of observed differences between the two groups 
in each dataset. A low pseudo p-value indicates that the observed differences are 
unlikely to be due to random chance.

Table 4 presents the pseudo p-values for various network metrics across the three 
datasets. In summary, the results show extremely low pseudo p-values for both local 
and global transitivity, density, motifs, and reciprocity across all datasets, indicating 
highly statistically significant differences between the groups. The deniers’ networks 
consistently exhibit higher transitivity and density than the believers’ networks. 
Modularity shows statistically significant differences, particularly in the Climate 
Change dataset, though with less certainty compared to other metrics. Assortativity 
has relatively higher pseudo p-values, especially in the Ukraine War and Vaccine 
datasets, suggesting less pronounced differences between the groups for this metric.

Fig. 6   Network structure of climate dataset. a Believers, b deniers
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Implication

As this study identifies features based on network metrics, in this section, we aim 
to expand our finding by developing a machine learning model capable of pre-
dicting polarized groups using these network metrics. First, to gain insight into 
how these metrics differ between the two groups and their potential impact on 
model development, we employ pairplot visualization. The pairplot visualizes the 
relationships between various network metrics across two groups: believers or pro 
(in blue) and deniers or anti (in red). The metrics analyzed include density, close-
ness, transitivity (local and global), number of cliques, number of components, 
and assortativity. Figures 9, 10, and 11 present these plots for the climate change, 
war, and vaccine datasets, respectively. As evident from these figures, there is a 

Fig. 7   Network structure of Ukraine dataset, a Pro, b anti
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clear separation between the two groups. The consistent patterns observed in the 
pairplots support the possibility of the model achieving near-perfect metrics (pre-
cision, recall, F1-score), as reported later. The pairplot provides valuable insights 
into the relationships between network metrics for the two polarized groups. 
The observed patterns suggest that several features, particularly density, close-
ness, transitivity, and the number of cliques, are highly informative and should 
be central to the model development process. These features should be prioritized 
during model training, as they appear to carry significant information for distin-
guishing between the two groups. This visual analysis reinforces the expectation 
of high model performance, as indicated by the near-perfect metrics achieved in 
later evaluations.

Fig. 8   Network structure of Vaccine dataset, a Pro, b anti
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After demonstrating how these features in the pairplot can effectively separate 
the two groups, we now propose our machine learning model, which uses these fea-
tures to predict polarized groups. In our approach to predicting whether a subset of 
network data belongs to the “anti” or “pro” group, we utilize a combination of net-
work metrics and machine learning techniques. The model leverages a RandomFor-
est classifier to perform this classification task. This process involves several critical 
steps that contribute to the development of an effective predictive model. To do this, 
we start by dividing the dataset into two distinct groups based on their affiliations: 
“pro” and “anti”. This classification is derived from user status information where 
each user’s status is either “pro” or “anti”. We then further partition these groups 
into training, validation, and test subsets. This separation ensures that the model is 
trained on one portion of the data and evaluated on another, which helps in assess-
ing its generalization capability. For each subset, we compute various aforemen-
tioned network metrics. These metrics are crucial as they capture the structural and 

Fig. 9   Pairplot of network metrics for the climate change dataset, comparing believers and deniers 
groups. The plot shows distinct separations between the two groups across various network metrics such 
as density, closeness, transitivity, and cliques. The deniers group generally exhibits higher values in den-
sity, closeness, and transitivity, indicating a more tightly connected and clustered network structure com-
pared to the believers group
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connectivity characteristics of the network. To find representative values for these 
metrics, we analyze subsets of the training data. By evaluating multiple random sub-
sets, we derive approximate ranges and distributions of these metrics for both “pro” 
and “anti” groups.

Using the metrics computed from the training subsets, we train a machine learn-
ing model. This model learns to distinguish between the “pro” and “anti” groups 
based on the network metrics. To ensure robustness and avoid overfitting, we per-
form cross-validation during the training phase. Additionally, a separate hold-out 
validation set is used to evaluate the model’s performance, ensuring that it general-
izes well to unseen data.

After training, the model is tested on a separate test set that was not used during 
training or validation. This final test evaluates how well the model can predict the 
group classification for new, unseen subsets of data. We assess the model’s perfor-
mance using precision, recall, and F1-score. These metrics provide a comprehensive 

Fig. 10   Pairplot of network metrics for the Ukraine war dataset, highlighting differences between pro and 
anti groups. The anti group tends to have higher values in metrics like density, closeness, and transitivity, 
suggesting a more cohesive and clustered network. The pro group shows a more dispersed structure with 
lower density and fewer cliques, indicating a less centralized network
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view of the model’s predictive capability and help in understanding its effectiveness 
in distinguishing between the “pro” and “anti” subsets.

By using a range of network metrics, our model gains a nuanced understanding 
of the structural characteristics of different groups. This leads to more accurate pre-
dictions as the model can leverage multiple facets of network data to differentiate 
between “pro” and “anti” subsets.

The results presented in Table  5 demonstrate the model’s strong performance 
across the climate change, war, and vaccine datasets. The model consistently 
achieves high precision, recall, and F1-scores during cross-validation, with values 
generally in the mid-90s range. For the climate change dataset, the model attains a 
precision of 0.96, recall of 0.95, and F1-score of 0.95. These metrics indicate that 
the model is highly effective at correctly identifying the believers and deniers groups 
within the climate change dataset, with minimal false positives and false nega-
tives. In the war dataset, the model maintains its strong performance, achieving a 

Fig. 11   Pairplot of network metrics for the vaccine dataset, showing the distribution of key metrics for 
pro and anti groups. The anti group displays higher density, closeness, and transitivity, similar to the 
other datasets, suggesting stronger internal connections and clustering. The pro group is characterized by 
lower metric values, reflecting a more loosely connected network structure
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precision of 0.94, recall of 0.93, and F1-score of 0.93. This consistency across all 
metrics highlights the model’s robustness in capturing the specific patterns within 
war-related data. The results for the vaccine dataset are equally impressive, with a 
precision of 0.96, recall of 0.95, and F1-score of 0.95. These results suggest that 
the model remains highly effective in distinguishing between pro and anti groups in 
vaccine-related discussions.

Given these metrics, we can conclude that the model has effectively learned 
the underlying patterns in the data, enabling it to accurately classify group affilia-
tions across different contexts (climate change, war, and vaccine). The consistency 
between the cross-validation, validation, and test results further reinforces the mod-
el’s robustness and generalization capability, suggesting that it is not overfitting and 
should perform well on new, unseen data.

Conclusion

This study aimed to examine the network structure of two active groups in social 
networks using 15 well-known metrics applied to three major networks. Based on 
the findings and experimental results, it can be concluded that the deniers group 
exhibits a more coherent network structure compared to the believers group. Various 
metrics, such as network reciprocity, density, diameter, closeness, transitivity (local 
and global), cliques, modularity, and number of components, consistently indicate 
a higher level of coherence and connectivity in the deniers (anti) group. Meas-
ures such as cliques, transitivity, number of components, and density reveal that 
the deniers (anti) group is more coherent and relatively well-connected. Addition-
ally, the diameter, SCC (strongly connected components), WCC (weakly connected 
components), and closeness metrics indicate that users within the deniers group are 
closer to each other, suggesting the presence of cycles in their network. These cycles 
contribute to the amplification of tweets within echo chambers. On the other hand, 
the believers group exhibits a tree-like structure without cycles, and the longer path 
lengths between users in this group may lead to reduced impact and dissemination 
of their tweets within echo chambers, compared to the deniers group. The depiction 
of the number of components in Figs. 6, 7, and 8 further illustrates the degree of 
segregation within the believers group, emphasizing the stronger connectivity within 
the deniers group. Although the network structure for both groups is not purely tree-
like, the higher density value and lower number of components in the deniers (anti) 
group suggest a more graph-like structure compared to the believers (pro) group. 

Table 5   Cross-validation 
performance metrics across 
different datasets

Dataset Precision Recall F1-Score

Climate change 0.96 0.95 0.95
War 0.94 0.93 0.93
Vaccine 0.96 0.95 0.95
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These findings have implications for feature selection in machine learning models 
and can provide valuable insights for further research in this domain.
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