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Abstract: The main goal of this research was to investigate whether people 
exhibit algorithm aversion—a tendency to avoid using an imperfect algorithm 
even if it outperforms human judgments—in the case of estimating students’ 
percentile scores on a standardized math test. We also explored the relationships 
between numeracy and algorithm aversion and tested two interventions aimed 
at reducing algorithm aversion. In two studies, we asked participants to estimate 
the percentiles of 46 real 15-year-old Polish students on a standardized math 
test. Participants were offered the opportunity to compare their estimates with 
the forecasts of an algorithm—a statistical model that predicted real percentile 
scores based on fi ve explanatory variables (i.e., gender, repeating a class, the 
number of pages read before the exam, the frequency of playing online games, 
socioeconomic status). Across two studies, we demonstrated that even though 
the predictions of the statistical model were closer to students’ percentile scores, 
participants were less likely to rely on the statistical model predictions in 
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making forecasts. We also found that higher statistical numeracy was related 
to a higher reluctance to use the algorithm. In Study 2, we introduced two 
interventions to reduce algorithm aversion. Depending on the experimental 
condition, participants either received feedback on statistical model predictions 
or were provided with a detailed description of the statistical model. We found 
that people, especially those with higher statistical numeracy, avoided using 
the imperfect algorithm even though it outperformed human judgments. 
Interestingly, a simple intervention that explained how the statistical model 
works led to better performance in an estimation task.

Key words: algorithm aversion, numeracy, estimation, augmented 
decisions, good decisions.

AWERSJA DO ALGORYTMÓW: WRAŻLIWOŚĆ NA INTERWENCJE
ORAZ ZWIĄZEK Z POZIOMEM ZDOLNOŚCI NUMERYCZNYCH

Streszczenie: Głównym celem tego projektu było zweryfi kowanie hipotezy 
dotyczącej niechęci do korzystania z algorytmów (ang. algorithm aversion) – 
tendencji do unikania stosowania niedoskonałego algorytmu nawet wtedy, gdy 
w swoich przewidywaniach przewyższa on ludzkie sądy. W tym celu posłuży-
liśmy się przykładem wyników w teście z matematyki. Dodatkowo zbadaliśmy 
związki między zdolnościami numerycznymi, a niechęcią do algorytmów oraz 
zweryfi kowaliśmy skuteczność dwóch interwencji, które miały na celu zmniej-
szenie awersji do algorytmów. W dwóch badaniach poprosiliśmy uczestników 
o oszacowanie wyników centylowych 46 piętnastoletnich uczniów w standa-
ryzowanym teście z matematyki. Uczestnicy mogli oszacować wyniki samo-
dzielnie lub na podstawie prognoz modelu statystycznego, który przewidywał 
rzeczywiste wyniki w oparciu o pięć predyktorów (płeć, powtarzanie zajęć, licz-
ba stron przeczytanych przed egzaminem, częstość grania w gry online oraz 
status ekonomiczny). W obu badaniach wykazaliśmy, że osoby badane rza-
dziej polegały na przewidywaniach algorytmu, mimo że oszacowania modelu 
statystycznego były bliższe rzeczywistym wynikom uczniów niż oszacowania 
uczestników badań. Wykazaliśmy także, że osoby o większych zdolnościach 
numerycznych wykazywały silniejszą niechęć do korzystania z prognoz algo-
rytmu. W drugim badaniu testowaliśmy skuteczność dwóch interwencji mają-
cych na celu zmniejszenie awersji do algorytmów. W zależności od warunku 
badawczego uczestnicy otrzymywali informacje zwrotne na temat przewidy-
wań modelu lub mogli zapoznać się ze szczegółowym opisem modelu staty-
stycznego. Wykazaliśmy, że proste objaśnienie działania modelu doprowadziło 
do lepszego szacowania wyników przez badanych.
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Słowa kluczowe: awersja do algorytmów, zdolności numeryczne, oszacowa-
nie, wspomaganie decyzji, dobre decyzje.

  ALGORITHM AVERSION: SENSITIVITY TO INTERVENTIONS

AND THE RELATIONSHIP WITH NUMERACY

In a fast-changing world of new technologies, people are often confronted with 
an overwhelming amount of information. Various algorithms have been developed 
to improve judgments and decisions in such complex and dynamic environments 
(Fry, 2018). For example, laypersons who intend to invest money in stocks can 
consult with statistical models predicting future revenues of specifi c companies; 
music lovers are able to explore new albums suggested by an algorithm learning 
from their previous music preferences, and clinicians can use tailored medical 
algorithms to reach a diagnosis. Although algorithms are often better than humans 
in making accurate forecasts, it has been documented that people exhibit algorithm 
aversion — a tendency to avoid using an imperfect algorithm even if it outperforms 
human judgments (Dietvorst et al., 2018). In this study, we investigated algorithm 
aversion in the case of estimating students’ percentile scores on a standardized 
math test. In contrast to other similar studies, we additionally explored the role of 
numeracy in avoiding algorithmic aids and experimentally tested two interventions 
aimed at reducing algorithm aversion.

Algorithm aversion
Research comparing the effectiveness of human and algorithmic predictions has 

shown that algorithms regularly surpass humans (Dawes et al., 1989; Meehl, 1954) in 
a wide variety of domains (Grove et al., 2000): from forecasting product sales (Fildes 
et al., 2009) to medical diagnosing and management decision skills (Esmaeilzadeh et 
al., 2015; Inthorn et al., 2015; Prahl et al., 2013). Despite this, people still decide to 
take advice from a human counselor than from the algorithmic one, thus frequently 
diminishing the value of the algorithmic superiority (Önkal et al., 2009). This irrational 
devaluation of algorithmic advice has its roots in the debate between clinical and 
actuarial psychology (Meehl, 1954). In the 1950’s, algorithms were created as a 
solution for our cognitive limitations. Simple models were outperforming experts 
during psychological examination (Dawes, 1979), but many clinical psychologists and 
researchers were still against the statistical model, drawing their conclusions from 
traditional computing and diagnosing methods (Meehl, 1954). Today, the algorithm 
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devaluation effect raised in a seminal work by Meehl (1954) is known as algorithm 
aversion (Dietvorst et al., 2015).

The problem of algorithm aversion lies in defi ning the cause of the phenomenon 
and most of the explanations are based on anecdotes rather than empirical evidence 
(Dietvorst et al., 2015). The reasons for algorithm aversion incorporate the desire 
for perfect forecasts (Dawes, 1979; Einhorn, 1986; Highhouse, 2008), problems 
with learning (Dawes, 1979), the ability of human predictions to improve through 
experience (Highhouse, 2008), unwillingness to take into account the unique 
individual circumstances such as medical examination (Longoni et al., 2019), 
individual locus of control (Shaffer et al., 2013), and the widely understood need for 
human-like approach (Diab et al., 2011).

Dietvorst, Simmons, and Massey (2015) found that participants preferred to 
make their own predictions rather than rely on an algorithm that made mistakes. 
Even after the algorithms were seen as better in fi nding obvious errors, humans 
were seen as better in learning from mistakes and fi nding exceptions to the rule 
or detect challenging to understand “diamonds in the rough.” In another study, 
Diervorst, Simmons, and Massey (2018) also found that if participants had
a chance to slightly modify the outcome of algorithmic predictions, it made them 
more satisfi ed and tolerant of error. Additionally, their trust in superior algorithm 
predictions increased, and they were more likely to choose subsequent forecasts by 
the algorithm. These fi ndings improve the potential to overcome algorithm aversion 
by introducing different interventions aimed at enhancing comprehension of an 
algorithmic mechanism and its predictions (e.g., explaining how an algorithm 
works or providing feedback on algorithmic predictions). Nevertheless, learning the 
algorithm and understanding it may be moderated by different individual factors 
(e.g., cognitive styles, Green & Hughes, 1986). In the present study, we decided to 
explore one of such factors related to cognitive abilities.

Numeracy
Statistical numeracy — the ability to understand and use probabilistic and 

mathematical concepts — is regarded as one of the most robust predictors of 
superior decision making (Cokely et al., 2012, 2018; Garcia-Retamero et al., 2019; 
Ghazal et al., 2014; Sobków et al., 2020; Sobkow, Olszewska, et al., 2020; Weller et 
al., 2013). It has been repeatedly demonstrated that people with high numeracy, in 
comparison to people with low numeracy, make better decisions in both medical 
(Petrova et al., 2016, 2017) and fi nancial (Estrada-Mejia et al., 2016; Estrada-Mejia 
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et al., 2020) domains. Interestingly, the positive relationship between numeracy and 
better decision making holds even when other cognitive abilities such as cognitive 
refl ection and fl uid intelligence are controlled (Peters & Bjalkebring, 2015; Sobkow, 
Garrido, et al., 2020; Sobkow, Olszewska, et al., 2020). Several studies have provided 
evidence for different psychological mechanisms that may explain more accurate 
judgments and better decisions made by people with high numeracy. For example, 
such individuals process probabilities (Millroth & Juslin, 2015; Petrova et al., 2014, 
2019; Traczyk & Fulawka, 2016) and values (Schley & Peters, 2014) in a more 
linear and consistent (Traczyk, Fulawka, et al., 2020) way; have a better memory for 
outcomes and numerical information (Peters & Bjalkebring, 2015; Shoots-Reinhard 
et al., 2020; Sobkow, Olszewska, et al., 2020); deliberate more and explore a decision 
problem to a greater extent (Ashby, 2017; Cokely & Kelley, 2009; Jasper et al., 2017; 
Traczyk, Lenda, et al., 2018), employing their experience for judgments and choices 
(Traczyk, Lenda, et al., 2018; Traczyk, Sobkow, et al., 2020); use decision strategies 
adaptively (Jasper et al., 2013; Traczyk, Sobkow, et al., 2018); tend to draw different 
(generally stronger or more precise) affective meaning from numbers and numerical 
comparisons (Peters, 2012; Peters et al., 2006). 

Interestingly, statistical numeracy is positively related to other facets of numerical 
abilities (Sobkow et al., 2019), such as subjective numeracy/numerical confi dence 
(Fagerlin et al., 2007) and approximate numeracy (Peters & Bjalkebring, 2015), but 
it does not mean that it is a unitary construct always predicting decision-related 
variables in the same direction. For instance, Peters et al. (2019) demonstrated that 
more objectively numerate participants experienced a greater proportion of positive 
fi nancial outcomes only when they were more numerically confi dent (i.e., scored 
higher in the subjective numeracy test). Furthermore, Sobkow et al. (2020) revealed 
that people with high approximate numeracy were more successful in avoiding 
negative decision outcomes in real-life while individuals with high subjective 
numeracy/numerical confi dence experienced more negative outcomes (even if the 
relationship was controlled for statistical numeracy and other cognitive abilities). 

Taking these fi ndings into account, we can expect the two possible effects of 
numeracy on algorithm aversion. On the one hand, if people with high statistical 
numeracy have low subjective numeracy (i.e., they are less confi dent about their 
numerical abilities), such individuals might rely on algorithmic predictions more 
often (Logg et al., 2019). On the other hand, high statistical numeracy accompanied 
by high subjective numeracy might be associated with a greater algorithm aversion 
because of higher trust in individual numerical abilities and lower trust in algorithmic 
predictions.
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Overview
In two studies reported in this paper, we investigated algorithm aversion using an 

original statistical model predicting real students’ percentile scores on a standardized 
math test. For this purpose, we asked participants to estimate percentiles of real 
students’ scores. Participants were informed that they could provide estimates by 
themselves or use predictions of an ‘imperfect’ algorithm. We hypothesized that 
people would exhibit algorithm aversion, that is, they would tend to reject a statistical 
model’s predictions. We also explored how people with high or low numeracy would 
rely on statistical model predictions to make forecasts about students’ percentile 
scores. Finally, we tested two interventions aimed at reducing algorithm aversion. 
Specifi cally, we expected that interventions involving feedback on the algorithm’s 
performance and the explanation of the statistical model would decrease reluctance 
to use algorithms.

STUDY 1

THE STATISTICAL MODEL PREDICTING PERCENTILE SCORES

ON A STANDARDIZED MATH TEST

We developed a statistical model using data collected in the OECD’s Program 
for International Student Assessment (PISA). PISA measures 15-year-olds’ skills 
in reading, mathematics, and science (particularly, the role of these skills in 
solving real-life problems). We used data from PISA 2018 (the seventh round of the 
international assessment). Firstly, we selected data from Polish students (N = 5,625) 
who completed PISA 2018. Secondly, based on exploratory correlation analyses, 
we selected fi ve variables that were signifi cant predictors of math scores (i.e., 
gender, repeating a class, the number of pages read before the exam, the frequency 
of playing online games, socioeconomic status). Additionally, we fi ltered out all 
observations with missing data in these predictors, resulting in a total of N = 4,639 
observations. Thirdly, we randomly divided dataset into three groups consisting 
of N = 3,526, N = 1,067, and N = 46 observations. These data sets were used to 
train the model, estimate prediction accuracy, and test participants’ predictions in 
empirical studies, respectively. 

The algorithm we employed in the current research was based on a linear regression 
model predicting percentiles of 3,526 real 15-year-old students on a standardized 
PISA math test (Table 1; see Table S1 in the Appendix for correlation coeffi cients 
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among predictors). The model explained R2 = .30 variance of the outcome variable; 
all fi ve variables were signifi cant predictors of the outcome variable (all ps < .001). 

Table 1
Regression model predicting the performance (i.e., the percentile) in a standardized math test 
being a part of PISA 2018 (narrowed down to a sample of Polish students)

Estimate b SE t p
Intercept 2.19 2.10 1.04 .297

Gender (female) 6.75 0.83 8.11 < .001
Frequency of playing online games -4.29 0.29 -14.69 <.001

Number of pages read before the exam 5.50 0.30 18.52 <.001
Repeating a class -22.91 3.22 -7.13 <.001

Socioeconomic status 8.87 0.41 21.80 <.001

Prediction accuracy of the model was tested using an independent sample of 
N = 1,067 students from the same PISA data set. We found that the model predictions 
were off by 20 percentiles on average from the real students’ percentile scores. 
Additionally, in a pilot study, we found that participants (N = 24) who were asked 
to estimate the percentiles of 30 real students performed worse than the model with 
a mean absolute deviation from the real students’ percentile scores of M = 22.79 
(SD = 16.37).

Participants 
One hundred native Polish speakers (Mage = 25.3, SDage = 7.9, 44 females) recruited 

from the Prolifi c participant’s pool took part in this study. All participants gave 
informed consent. They were informed that the study is voluntary and anonymous. 

Materials and procedure
We informed participants that their task is to estimate the percentiles scores of a 

sample of 46 real 15-year-old Polish students on a standardized math test. We briefl y 
explained how the percentiles should be interpreted using an illustrative example. 
We instructed participants that their estimates should be based on fi ve features 
describing each of 46 students, explicitly presented and explained. The features 
were: 1) gender (male, female), 2) whether a student repeated a class (yes, no), 3) the 
number of pages read before the exam (fi ve levels from 1 or fewer pages to 500 or 
more), 4) the frequency of playing online games (fi ve levels from never to every day), 
5) socioeconomic status (fi ve levels from very low to very high).
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Additionally, participants were informed that, based on these features and data 
collected from a large sample of real students, we developed a statistical model to 
support predicting the percentiles on a standardized math test. Similar to previous 
research by Dietvorst et al. (2018), we highlighted that the model is imperfect2, and 
its prediction error is +/- 20 percentiles. Having confi rmed that all information about 
the task and the model are clear, participants started a training session. In this stage 
of the study, participants learned the experimental task and predictions of the model. 
In particular, 16 vignettes (Figure 1), including information about features describing 
16 students, were displayed on separate screens along with the model predictions. 
Participants were asked to familiarize themselves with each vignette and type the 
model predictions (i.e., the percentile of a given student predicted by the model and 
presented along with other information about a student).

Figure 1. Exemplary vignette presented to participants in a training session. In the test session, 
information about model prediction (i.e., Wynik) was unavailable. Płeć (gender), Powtarzanie 
klasy (repeating a class), Ilość przeczytanych stron do egzaminu (the number of pages read 
before the exam), Granie w gry online (the frequency of playing online games), Status 
socjoekonomiczny (socioeconomic status).

In the next stage of the study, participants were instructed to estimate the 
percentiles of the other group of 30 students using the same features as in the 
training session. However, there was no information available about the predictions 
of the model. Instead, participants had to decide whether they wanted to estimate 
each student’s percentile by themselves or to use model prediction. If they decided 
individually, they were asked to type their estimate on the next screen. In contrast, 

2 We introduced information about the imperfect algorithm and its prediction error to clearly assure participants 
that their estimates can be more accurate than those provided by the statistical model. If the algorithm 
provided only correct estimates, then there would be no point for participants to make individual predictions.
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if participants chose to use the model predictions, they saw the model’s percentile 
estimate on the next screen.

There was no time limit for this task. Vignettes were presented in random order 
for each participant. The participants were not provided with feedback on their 
performance (i.e., how their estimate or the model estimate deviated from the real 
percentiles). 

To measure numeracy, we used the Berlin Numeracy Test (BNT, Cokely et al., 
2012). This test consists of four mathematical tasks that capture risk literacy, statistical 
numeracy, and comprehension of probability. BNT was always administered after the 
estimation task at the end of the study.

Data preprocessing and statistical approach
For each participant estimating the percentile for each of 30 students, we extracted 

the number of decisions to choose the model predictions or make an individual 
prediction. Next, we computed absolute deviance from real students’ percentile scores 
in the math test. Specifi cally, we subtracted each estimate (irrespective of whether 
it was made by the model or by the individual) from the real student’s percentile 
score. A higher absolute value of this outcome indicated that participants’ estimates 
deviated more from the percentile score.

The fi rst variable served as an indicator of the algorithm aversion (i.e., whether 
people tend to use forecasts of an algorithm or decide on their own), whereas the 
latter indicated an accuracy of estimates (irrespective of the previous decision).

We tested our predictions using Bayesian multilevel regression analysis (specifying 
unique intercepts for participants) performed in the brms package (Bürkner, 2018) 
that uses the STAN programming language. For each model, we run four chains with 
10,000 iterations. We burned the fi rst 2,000 samples of the iterations. To regularize 
estimation of the models and rule out unreasonable parameter values, we used 
weakly informative priors for coeffi cients [Normal(0,10)] and a Half-Cauchy(10) 
prior for residual variation (Nalborczyk et al., 2019). We diagnosed chains for 
convergence using Gelman–Rubin statistics, visual inspection, and autocorrelation 
plots. We found that the sampling procedure was effi cient (values of the Gelman–
Rubin statistic were R < 1.01).
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Results
Descriptive statistics for the measures used in Study 1 are presented in Table 2.

Table 2
Descriptive statistics for the measures used in Study 1. The decision to use an algorithm
is a dichotomous variable (1 – yes, 0 – no)

  M SD Min Max
BNT 1.81 1.24 0 4

Decision to use algorithm 0.33 0.27 0 1
Mean deviance from real percentile scores 21.16 2.82 14.18 31.67

In the fi rst analysis, we fi tted a varying intercept model (Bernoulli model with logit 
link function) with a participants’ decision to use the statistical model predictions as 
an outcome variable and mean-centered BNT as a predictor (Table 3). The model 
explained R2 = .31 of variance. We found that participants tended to avoid using the 
statistical model predictions, α = -0.90, 95% CrI = [-1.25, -0.54]. Participants chose 
the statistical model instead of making an individual decision in 33% of cases on 
average. BNT was negatively related to these decisions, b = -0.29, 95% CrI = [-0.58, 
0.00]. Additional analysis of posterior probability distribution showed that 97% of 
this distribution is below 0, suggesting that there is a 97% probability that people with 
higher numeracy are more likely to forecast students’ percentile scores on their own.

Table 3
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting decision to use the algorithm
(1 – yes, 0 – no) in Study 1

Parameter Mean SE CrI lower CrI higher Rhat
Intercept -0.9 0.18 -1.25 -0.54 1.00

BNT -0.29 0.15 -0.58 0 1.00
σsubject 1.71 0.16 1.43 2.05 1.00

In the second analysis (Gaussian model), we predicted performance in the 
estimation task, which was operationalized as  a mean absolute deviation from real 
students’ percentile scores irrespective of whether participants provided estimations 
by themselves or used predictions of the statistical model. Lower numbers of 
this variable indicated better performance (i.e., participants provided percentile 
estimated closer to real students’ percentile scores). We found that BNT was not a 
credible predictor of performance (Table 4), but the decision to use the statistical 
model to predict real students’ percentile scores was related to better estimates of 
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the percentiles, b = -6.50, 95% CrI = [-7.66, -5.34]. The model explained R2 = .04 
of variance. 

 Table 4
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting performance in the estimation task
in Study 1

Parameter Mean SE CrI lower CrI higher Rhat
Intercept 23.29 0.34 22.62 23.97 1.00

BNT 0.00 0.23 -0.45 0.46 1.00
Decision (to use the statistical model predictions) -6.50 0.60 -7.66 -5.34 1.00

σsubject 0.43 0.31 0.02 1.17 1.00

σe 15.33 0.20 14.95 15.73 1.00

Because features of the students were visible to subjects prior to their choices 
whether to use the algorithm or not (and consequently, participants’ decisions/
estimations might be infl uenced depending on the features of the student), we also 
fi tted models including all features of each student as control variables.  The general 
pattern of results and main conclusions remained the same (see Tables S2 and S3 
in the Appendix), suggesting that specifi c characteristics of students presented on 
vignettes did not impact our fi ndings.

STUDY 2

In Study 1, we demonstrated that people avoided using predictions of the statistical 
model in making forecasts about the percentile of real students’ percentile scores on 
a standardized math test. People with higher statistical numeracy were less likely to 
use the statistical model in their predictions. However, numeracy was not related to 
better performance in the estimation task. It was the decision to rely on the statistical 
model that led to better estimates. In Study 2, we further explored the factors 
associated with algorithm aversion. Specifi cally, we introduced another measure of 
numeracy (i.e., subjective numeracy; Fagerlin et al., 2007), which can be understood 
as a measure of numeric confi dence (Peters et al., 2019). Additionally, we introduced 
two experimental manipulations that are likely to increase trust in statistical models. 
In the fi rst experimental condition, we explained how the statistical model works, 
while in the second experimental condition, we provided direct feedback on the 
algorithm’s predictions.
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Participants 
One hundred and eighty-one native Polish speakers (Mage = 26.3, SD = 8.6, 38 

females) recruited from the Prolifi c participant’s pool took part in this study. All 
participants gave informed consent. They were informed that the study is voluntary 
and anonymous. Additionally, participants were informed that three people who will 
provide the most accurate estimates would receive an additional bonus payment.

Materials and procedure
We employed an experimental design similar to Study 1. Participants were asked 

to estimate the percentiles of 46 real 15-years-old Polish students on a standardized 
math test. The task was explained in the same way as in Study 1. 

In contrast to Study 1, participants were randomly assigned to one of the three 
conditions. The control condition was identical to the training session of Study 
1. That is, participants learned the model predictions by processing vignettes 
describing 16 students. In each case, participants were asked to type the percentile 
of each student that was explicitly provided in a vignette. In the feedback condition, 
participants were instructed to provide percentile estimates, but they did not have 
access to estimates recommended by the model (as in the control condition). Instead, 
they provided percentile estimates by themselves, followed by feedback information 
indicating predictions of the statistical model on the next screen. In the description 
condition, participants were provided with a detailed explanation of the statistical 
model. They were asked to read a brief description of all predictors/features 
attentively and focus on their contribution to math test scores. This information was 
presented in infographics. Additionally, a visual reminder of a model was displayed 
throughout the training session (Figure 2).

Figure 2. A graphical illustration of the statistical model demonstrating the character
of relationships between predictors and the outcome variable (see Figure 1 for the translation)

The test session was identical to the session run in Study 1. That is, participants 
decided whether they wanted to choose the model predictions or determine the 
percentile by themselves.
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Finally, we measured statistical numeracy with BNT. Additionally, we asked 
participants to complete the 8-item subjective numeracy test (SNS, Fagerlin et al., 
2007), a measure of people’s beliefs about their skills performing mathematical 
operations, preferences for using numbers, and numerical confi dence. These 
measures were administered at the end of the procedure.

Results
Descriptive statistics for the measures used in Study 2 are presented in Table 5.

Table 5
Descriptive statistics for the measures used in Study 2. The decision to use an algorithm
is a dichotomous variable (1 – yes, 2 – no)

 Measure  Condition N M SD Minimum Maximum

BNT
control 59 1.70 1.07 0 4

description 55 1.71 1.29 0 4
feedback 67 1.69 1.21 0 4

SNS
control 59 32.76 6.73 15 43

description 55 33.62 5.41 17 43
feedback 67 32.55 6.67 17 47

Decision to use algorithm
control 59 0.30 0.32 0 1

description 55 0.32 0.28 0 1
feedback 67 0.30 0.31 0 1

Mean deviance from real percentile scores
control 59 21.38 3.45 15.89 30.98

description 55 20.16 3.21 15.10 34.30
feedback 67 21.42 3.04 16.39 31.56

Similarly to Study 1, we fi tted a varying intercept model with a participants’ 
decision to use the statistical model predictions as an outcome variable and mean-
centered BNT and SNS as predictors, and dummy coded experimental conditions 
(with a control condition as a reference category; Table 6). The model explained
R2 = .41 of variance. We found that participants tended to avoid using the statistical 
model predictions, α = -1.55, 95% CrI = [-2.23, -0.90]. Participants chose the statistical 
model instead of making an individual decision in 31% of cases on average. BNT 
was negatively related to these decisions, b = -0.35, 95% CrI = [-0.70, 0.01]. There 
was a 97% probability that people with higher statistical numeracy would avoid 
basing their estimates on the statistical model predictions. In contrast, SNS was 
positively associated with the tendency to using the statistical model, but this effect 
was not credible, b = 0.04, 95% CrI = [-0.03, 0.11]. Neither feedback, b = -0.01, 95%
CrI = [-0.91, 0.89], nor the description/explanation of the statistical model, b = 0.29, 
95% CrI = [-0.64, 1.24], infl uenced decisions.
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Table 6
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting decision to use the algorithm
(1 – yes, 0 – no) in Study 2

Parameter Mean SE CrI lower CrI higher Rhat
Intercept -1.55 0.34 -2.23 -0.9 -1.55

BNT -0.35 0.18 -0.7 0.01 -0.35
SNS 0.04 0.04 -0.03 0.11 0.04

Description condition 0.29 0.48 -0.64 1.24 0.29
Feedback condition -0.01 0.46 -0.91 0.89 -0.01

σsubject 2.43 0.18 2.10 2.81 1.00

In the second analysis, we again predicted performance in the estimation task 
(Table 7). The model explained R2 = .04 of variance. We found that neither BNT, 
b = -0.13, 95% CrI = [-0.54, 0.29], nor SNS, b = 0.05, 95% CrI = [-0.03, 0.13], 
were credible predictors of performance. Again, the decision to use the statistical 
model to predict real students’ percentile scores was related to better estimates of 
the percentiles, b = -6.47, 95% CrI = [-7.39, -5.54]. In comparison to the control 
condition, people in the description condition were substantially more accurate in 
estimating percentiles, b = -1.14, 95% CrI = [-2.22, -0.05]. We did not fi nd a similar 
effect in the case of feedback, b = 0.05, 95% CrI = [-0.98, 1.09].

 Table 7
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting performance in the estimation task
in Study 2

Parameter Mean SE CrI lower CrI higher Rhat
Intercept 23.33 0.41 22.53 24.14 1.00

BNT -0.13 0.21 -0.54 0.29 1.00
Decision (to use the statistical model predictions) -6.47 0.47 -7.39 -5.54 1.00

SNS 0.05 0.04 -0.03 0.13 1.00
Description condition -1.14 0.55 -2.22 -0.05 1.00
Feedback condition 0.05 0.53 -0.98 1.09 1.00

σsubject 0.48 0.34 0.02 1.25 1.00

σe 15.90 0.15 15.61 16.20 1.00

Similarly to Study 1, we also fi tted additional two models, including features of 
students as control variables, showing that these covariates did not infl uence the 
general pattern of results (Table S4 and Table S5).
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DISCUSSION

We demonstrated that participants (especially those with higher statistical 
numeracy) tended to avoid the statistical model predictions in making forecasts 
about students’ percentile scores on a standardized math test even though the 
predictions of the statistical model were closer to real percentile. The level of 
algorithm aversion stayed strong across two studies and neither feedback nor 
descriptive intervention diminished it. Nevertheless, we demonstrated that a simple 
intervention explaining how the statistical model works led to better performance 
in an estimation task irrespective of algorithm aversion, which could be a promising 
direction of future research.

In a recent systematic review of algorithm aversion, Burton, Stain, and Jensen 
(Burton et al., 2020) identifi ed and categorized possible causes of why people are 
unwilling to use superior but imperfect algorithms. These categories cover fi ve 
themes, such as expectations and expertise, decision autonomy, incentivization, 
cognitive compatibility, and divergent rationalities. We believe that at least three 
themes can address the causes of algorithm aversion demonstrated in our research. 
In reference to the fi rst theme (expectations and expertise), participants might utilize 
their past experience to make predictions of students’ percentile scores. That is, years 
of experience at different education stages might induce an erroneous impression of 
being an expert in this area. Consequently, participants asked to make predictions of 
percentile scores on a math test were more likely to consult their subjective experience 
from elementary/high school rather than rely on the algorithmic aid. Additionally, the 
decision autonomy of our participants was restricted. In other words, they did not 
have control over algorithmic aid, resulting in a lack of decision control, opportunity 
to interact with the statistical model or calibrate it, which is a crucial factor in 
overcoming algorithm aversion (Dietvorst et al., 2018). Finally, the statistical model we 
used in our research could not be compatible with the cognitive processes underlying 
human statistical reasoning. While the model followed consecutive steps of a linear 
combination of features describing real students, participants could use different 
decision strategies. Such an explanation is exceptionally plausible among people with 
high numeracy, who are more likely to employ a greater number of various decision 
strategies from fast and frugal heuristics to elaborative and sophisticated decision 
rules, depending on task requirements and personal goals (Cokely et al., 2018; Cokely 
& Kelley, 2009; Traczyk, Sobkow, et al., 2018). Future studies should directly address 
these possible explanations and emphasize theory integration. 

Our study results can also be interpreted in light of recent fi ndings by Dietvorst 
and Bharti (2020). These authors provided ample evidence that people in uncertain 
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domains preferred human judgment to better-performing algorithmic decision aids. 
This effect can be explained by a diminishing sensitivity to forecasting error. People 
who exhibit diminishing sensitivity to forecasting error face a smaller subjective 
penalty for increasing error produced by the forecast. In consequence, such people 
would take risk, endeavoring to provide near-perfect forecasts. To do so, they would 
prefer forecast methods that have high variability, which may, on the one hand, result 
in producing near-perfect answers, and on the other hand, very inaccurate answers. 
In this sense, algorithm aversion is not about deciding between human judgment vs. 
algorithmic aid but rather between forecast methods of different accuracy variability.

In our study, participants with high numeracy avoided using the statistical model 
in their forecasts. It could be due to their diminishing sensitivity to forecasting 
errors (Dietvorst & Bharti, 2020). Highly numerate individuals who understand 
and use probabilistic and mathematical concepts may perceive themselves as better 
in numerical estimation than a statistical model and they want to provide the best 
possible estimation. Even though the statistical model outperforms human judgments 
on average, people with high numeracy may decide to take greater risk and make 
forecasts on their own to provide a near-perfect answer. As a result, they avoid
a lower-variance statistical model.

We did not fi nd evidence suggesting that our experimental manipulations 
decreased algorithm aversion. Neither feedback on the algorithm’s estimates nor 
the explanation of how the algorithm infl uenced reluctance to use the algorithm. 
Interestingly, the latter intervention was related to better performance in the 
estimation task. We speculate that this manipulation might have infl uenced 
comprehension, algorithm literacy, or trust in the statistical model. Furthermore, 
participants might have used predictions of the statistical model adaptively. That 
is, during the learning process, they might identify cases in which the algorithm 
led to better estimations than human judgment. Based on implicit learning or 
intuitive abilities (Sobkow et al., 2018), some people could take advantage of 
additional information about the statistical mechanism underlying the algorithm. 
Due to the limitations of our experimental design, we are not able to address this 
hypothesis explicitly.

Despite the fact that our general fi ndings and conclusions remain stable across 
the two studies, some open questions emerged as a consequence of the methods we 
used in our study. Firstly, it is essential to note that we are not able to assess the 
level of instruction comprehension in our study precisely. We controlled whether the 
participants understood the instruction using only one ‘yes-no’ question. Although all 
participants in Study 1 and Study 2 confi rmed that the description of the algorithm 
and the instruction of the task were clear and understandable to them, it does not 
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imply that all participants understood the instructions to the same extent. For example, 
we explained that the statistical model is probabilistic and is off by 20 percentiles 
on average from students’ percentile scores. However, some participants, especially 
those with low numeracy, could interpret this information as a deviation in percentage 
points or percent deviations. As a consequence, they could employ different strategies 
to make decisions. Furthermore, following previous studies (Dietvorst et al., 2018) we 
informed participants that the algorithm is imperfect. Such information, yet essential 
(see footnote on p. 74), could evoke negative attitudes towards the algorithm that 
might have an impact on the decisions to use it.

Secondly, in Study 2, in comparison to Study 1, participants had a chance to 
receive an additional bonus payment for making top predictions. This additional 
reward could result in a higher likelihood of making individual predictions. 
Additionally, highly numerate participants who wanted to get additional bonus 
payment could make individual decisions more often. In this sense, performance 
measures could be distorted by monetary reward. Nevertheless, in light of the data 
from Study 1 (with no reward) and Study 2 (with reward), we did not fi nd substantial 
differences in algorithm avoidance tendency, performance in estimation task and the 
effect of numeracy on these outcome variables. Regardless of bonus payment, the 
results of Study 1 and Study 2 are very similar. Therefore, we cannot state that the 
remuneration infl uenced the observed effects. Nevertheless, these considerations 
(e.g., instruction comprehension and bonus reward) are important and should be 
taken into account in future research.

Thirdly, a selection of predictors for building the statistical model might raise some 
concerns. Since they are correlated, the algorithm’s predictive performance may not 
be uniform across the predictor space. In other words, a specifi c confi guration of 
some predictors can be more informative (e.g., it is less likely that girls play online 
games more often than boys) to make a decision whether to use the algorithm or 
not. We tried to rule out an alternative explanation of the algorithm aversion by 
performing additional statistical analyses that included students’ features as control 
variables in the model. We confi rmed that these additional predictors did not change 
the main conclusions of this research. Even though the algorithm was imperfect in its 
predictions and could be biased by specifi c confi gurations of students’ features, it was 
still better than humans in predicting students’ percentile scores.

To summarize, we demonstrated that algorithm aversion is a robust phenomenon. 
People underused algorithmic aid to make predictions about real students’ percentile 
scores on a standardized math test even if the statistical model outperformed human 
judgment. Such a tendency was stronger among people with high statistical numeracy. 
Although brief interventions had no direct effect on overcoming algorithm aversion, 
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explaining how the algorithm works might infl uence the overall performance in 
estimation tasks.
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APPENDIX

Algorithm aversion: Sensitivity to interventions and the relationship with numeracy

Table S1
Bayesian Pearson Correlations among predictors in the statistical model

Variable  1 2 3 4 5 6
1. Score Pearson’s r — 

BF10 — 

2. Gender Pearson’s r 0.044 — 
BF10 1.536 — 

3. Games Pearson’s r -0.237 *** 0.219 *** — 
BF10 > 100 > 100 — 

4. Reading Pearson’s r 0.362 *** -0.109 *** -0.091 *** — 
BF10 > 100 > 100 > 100 — 

5. Class repeat Pearson’s r -0.148 *** 0.052 0.050 -0.060 ** — 
BF10 > 100 8.880 5.713 69.060 — 

6. Status Pearson’s r 0.407 *** 0.003 -0.094 *** 0.229 *** -0.099 *** — 
BF10 > 100 0.019 > 100 > 100 > 100 — 

* BF₁₀ > 10, ** BF₁₀ > 30, *** BF₁₀ > 100

Table S2
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting decision to use algorithm in Study 1

Parameter Mean SE CrI lower CrI higher Rhat
Intercept -0.9 0.19 -1.28 -0.54 1

BNT -0.29 0.15 -0.59 -0.01 1
Gender -0.02 0.12 -0.25 0.21 1

Class repeat 0.02 10.03 -19.78 19.7 1
Reading -0.12 0.04 -0.19 -0.05 1
Games 0 0.04 -0.08 0.07 1
Status -0.13 0.06 -0.24 -0.02 1
σsubject 1.73 0.16 1.44 2.08 1
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Table S3
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting performance in the estimation task
in Study 1

Parameter Mean SE CrI lower CrI higher Rhat
Intercept 23.24 0.34 22.58 23.89 1

BNT 0.01 0.23 -0.44 0.45 1
Decision (to use the statistical model predictions) -6.34 0.58 -7.47 -5.21 1

Gender -4.37 0.67 -5.69 -3.07 1
Class repeat 0.02 9.96 -19.64 19.48 1

Reading 1.13 0.21 0.71 1.54 1
Games -2.05 0.21 -2.46 -1.63 1
Status -0.55 0.32 -1.19 0.08 1
σsubject 0.45 0.33 0.02 1.2 1

σe 14.76 0.19 14.39 15.14 1

Table S4
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting decision to use algorithm in Study 2

Parameter Mean SE CrI lower CrI higher Rhat
Intercept -1.56 0.34 -2.24 -0.89 1

BNT -0.35 0.18 -0.7 0.01 1
SNS 0.04 0.03 -0.03 0.11 1

Description condition 0.28 0.48 -0.67 1.23 1
Feedback condition -0.02 0.47 -0.96 0.93 1

Gender 0.08 0.09 -0.1 0.27 1
Class repeat 0.02 9.9 -19.32 19.34 1

Reading -0.11 0.03 -0.17 -0.06 1
Games -0.04 0.03 -0.1 0.02 1
Status -0.11 0.05 -0.2 -0.02 1
σsubject 2.46 0.18 2.12 2.84 1

Table S5
Posterior mean, standard error, 95% credible interval, and Rhat statistic for each parameter
of the model (with varying intercept by subject) predicting performance in the estimation task
in Study 2

Parameter Mean SE CrI lower CrI higher Rhat
Intercept 23.27 0.4 22.5 24.06 1

BNT -0.12 0.2 -0.52 0.27 1
Decision (to use the statistical model predictions) -6.28 0.46 -7.18 -5.38 1

SNS 0.05 0.04 -0.03 0.12 1
Description condition -1.14 0.54 -2.19 -0.09 1
Feedback condition 0.05 0.52 -0.95 1.06 1

Gender -4.7 0.51 -5.7 -3.7 1
Class repeat 0 9.99 -19.7 19.55 1

Reading 1.14 0.16 0.82 1.46 1
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Parameter Mean SE CrI lower CrI higher Rhat
Games -2.04 0.17 -2.36 -1.71 1
Status -0.42 0.25 -0.91 0.07 1
σsubject 0.56 0.37 0.03 1.35 1

σe 15.31 0.15 15.03 15.61 1




